Intrusion Detection System on Automotive CAN Bus

Senior Design Team sdmay24-39

Team: Cole Burkle, Alec Cose, Tiffanie Fix, Trace Haage

Advisor: Dr. Manimaran Govidarasu

Introduction

Most modern vehicles are interconnected through CAN Bus, a protocol on vehicle networks that facilitate communication among internal modules essential for vehicle operation such as the engine, dashboard, transmission, and brakes.

Problem

CAN Bus networks often do not consider cyber security and are vulnerable to attacks that involve injecting, altering or intercepting CAN messages to manipulate vehicle operation.

Solution

Implement an IDS on automotive CAN Bus to monitor network traffic for any malicious activity defined in the rules set to alert the user to promptly take action.

	6
Use	Lase

Users:

- Security researchers
- GRC within automotive Industry

Uses:

- Detect malicious activity on CAN Bus network
- Simulate cyber attacks on the vehicle

Design Requirements	l e	e
IDS	IDS:	
• Offline and Real-time detection		
Pi Test Bed		
Simulate vehicle ECU	Pi Test	

- Generate CAN messages using potentiometer
- **Car Test Bed**

- Send/Receive CAN messages
- Fuse box, TCU, BCM, ECU, multifunction switch, dashboard, ignition switch, steering column, main window switches

Attack Code

Simulate cyber attacks •

Technical Details		
IDS:	<u>Platform</u> : Snort v3 <u>OS</u> : Linux (Raspian)	
Pi Test Bed:	<u>Hardware</u> : Raspberry Pi 3 Model B+, PiCAN Hat 2, ECUsim 2000, Arduino uno, potentiometer	
Car Test Bed:	<u>Hardware</u> : 2007 Pontiac G6, Innomaker usb2can, 13V power supply	
Attack Code:	<u>Language</u> : Python <u>Library</u> : CAN-utils	

Design Approach

Testing

Denial of Service (DOS) Attack

Send large amount of traffic such as low ID messages or remote requests

Injection Attack

Injecting messages at random (fuzzing) or targeting IDs

Timing Attack

Executed by sending more messages than expected within a given timeframe

Results				
Attack	Pi Bed Detection	Car Bed Detection		
DOS	X	X		
Injection	X	X		
Timing	X	X		