


1

Development Standards & Practices Used

● SecurityOnion SIEM Environment

● Snort IDS/IPS

● Raspberry Pi 3 Model B+

● PICAN2 CAN Bus Hat

● ECUSIM2000

● Python Library - canutils, cantools, PyQt5

● Raspbian OS

Summary of Requirements

● Design testbeds with CAN channels that accurately simulate how passenger vehicles use

the CAN bus protocol.

● Introduce attack vectors used on CAN networks to our testbeds.

● Create rules for the Intrusion Detection System to properly detect these known attacks in

our testbeds.

● Ensure the Intrusion Detection System is both accurate and efficient when placed into

any CAN channel.

Applicable Courses from Iowa State University Curriculum

● CYB E 230

● CYB E 231

● CYB E 331

● CPR E 288

● CPR E 430

● CPR E 489

● COM S 309

New Skills/Knowledge acquired that was not taught in courses

● General knowledge about control systems and CAN bus protocols

● Python Libraries - canutils, cantools, PyQt5

● Raspberry Pi

● Arduino UNO/Arduino UNO IDE

● CAN bus attacks

● Project Management



2

Table of Contents

1 Team 4

1.1 TEAMMEMBERS 4

1.2 REQUIRED SKILL SETS FOR OUR PROJECT 4

1.3 SKILL SETS COVERED BY THE TEAM 4

1.4 PROJECTMANAGEMENT STYLE ADOPTED BY THE TEAM 5

1.5 INITIAL PROJECTMANAGEMENT ROLES 5

2 Introduction 5

2.1 Problem Statement 5

2.2 Requirements & Constraints 5

2.3 Engineering Standards 6

2.4 Intended Users & Uses 6

3 Project Plan 7

3.1 Task Decomposition 7

3.2 Project Management/Traffic Procedures 9

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 10

3.4 Projected Timeline/Schedule 11

3.5 Risks And Risk Management/Mitigation 11

3.6 Personnel Effort Requirements 12

3.7 Other Resource Requirements 16

4 Design 16

4.1 Design Content 16

4.2 Design Complexity 16

4.3 Modern Engineering Tools 17

4.4 Design Context 18

4.5 Prior Work/Solutions 18

4.6 Design Decisions 19

4.7 Proposed Design 19

4.7.1 Design 0 (Initial Design) 19

4.7.2 Design 1 (Design Iteration) 22

4.8 Technology Considerations 23

4.9 Design Analysis 23

5 Testing 23

5.1 Unit Testing 24

5.2 Interface Testing 24

5.3 Integration Testing 24

5.4 System Testing 24

5.5 Regression Testing 25

5.6 Acceptance Testing 25

5.7 Results 25

6 Implementation 25



3

7 Professionalism 26

7.1 Areas of Responsibility 26

7.2 Project Specific Professional Responsibility Areas 27

7.3 Most Applicable Professional Responsibility Area 28

8 Closing Material 28

8.1 Discussion 28

8.2 Conclusion 28

8.3 References 29

8.4 Team Contract 29



4

1 TEAM

1.1 TEAMMEMBERS

Trace Haage

Cole Burkle

Tiffanie Fix

Alec Cose

1.2 REQUIRED SKILL SETS FOR OUR PROJECT

● Programming

○ Python

○ C

● Networking

● Packet Capturing

● Packet Disassembly

● Reverse Engineering

● Real Time Operating Systems

● Real-time Documentation

● Technical Writing

● Vulnerability Research

1.3 SKILL SETS COVERED BY THE TEAM

Trace, Tiffanie, Cole, Alec - Programming

Tiffanie, Cole - - - - - - - - - - Local Networking

Alec, Tiffanie, Cole - - - - - - Packet Capturing

Trace, Cole - - - - - - - - - - - - Packet Disassembly

Trace, Tiffanie, Cole, Alec - - Reverse Engineering

Cole - - - - - - - - - - - - - - - - - Real Time Operating Systems

Alec - - - - - - - - - - - - - - - - - Real-time Documentation

Trace, Tiffanie - - - - - - - - - - Technical Writing

Tiffanie - - - - - - - - - - - - - - - Vulnerability Research



5

1.4 PROJECTMANAGEMENT STYLE ADOPTED BY THE TEAM

Majority vote, final decision goes to our Faculty Advisor

1.5 INITIAL PROJECTMANAGEMENT ROLES

Trace - Client Liaison/Pi Testbed Lead

Alec - Testbed Design/IDS Rule Development

Tiffanie - Vulnerability Research and Development Lead

Cole - Lead Vulnerability Tester/Car Testbed Lead

2 INTRODUCTION

2.1 PROBLEM STATEMENT

We are attempting to solve the problem of automotive cyber security in regards to CAN bus protocol. We

will be designing testbeds and a corresponding Intrusion Detection System (IDS) to monitor a CAN

network and alert of anomalies or malicious traffic.

2.2 REQUIREMENTS & CONSTRAINTS

Functional Requirements:

● Data Collection: The system should be capable of monitoring and capturing real-time traffic on

the CAN bus.

● Analysis Engine: Develop an algorithm to analyze CAN bus data for potential intrusions.

● Alert Generation: When an intrusion or anomaly is detected, the system should generate an alert

with relevant details.

● Reporting: The system should be able to produce reports showing detected intrusions, patterns,

and trends.

● Interoperability: The IDS should be capable of integrating with other systems, such as an

Intrusion Prevention System (IPS) or a Security Information and Event Management (SIEM)

system.

● False Positives/Negatives: The IDS will need to maintain a low amount of false positive alerts and

missed false negative allowances.

Performance Requirements:

● Real-time Processing: The IDS must analyze CAN bus data in real-time or near real-time.

● Scalability: The system should be scalable to handle a varying number of CAN messages per

second.

Usability Requirements:

● User Interface: A dashboard or interface that provides an overview of the system status, alerts,

and detailed reports.

● Configurability: Administrators should be able to update the detection rules or train the model

with new data.



6

Security Requirements:

● Data Integrity: Ensure that the data collected from the CAN bus is not tampered with during

analysis.

● Authentication and Authorization: Only authorized users should have access to the IDS interface

and configuration settings.

● Adversarial Attacks: Any machine learning approaches used should be preventing any possible

attacks against the model.

Constraints:

● Hardware Limitations: Depending on the platform or tools being used, there may be restrictions

related to processing power, memory, or storage.

● Data Privacy and Ethics: When using real-world data, ensure that no private or sensitive

information is accessed or disclosed.

● Complexity of the CAN bus: The sheer volume and speed of messages of the CAN bus may pose

challenges for real-time analysis.

● Budget: There may be costs associated with acquiring hardware, software, or datasets.

● Availability of Data: Getting access to real-world CAN bus data can be challenging. Simulated data

might not capture all intricacies of real-world traffic.

2.3 ENGINEERING STANDARDS

IEEE 802.10/IEEE 802.1Q: Standards for LAN/MAN security implementation

We are going to be directly working with LAN’s/WLAN’s as this is how devices on our network will be

connected. Our protocol we are using is CAN-over-IP so Ethernet standards directly relate to our project,

however this standard has been largely replaced by IEEE 802.1Q.

IEEE 829-2008: Standard for Software and System Test Documentation

As we’ll be working with a system (ICS), the eight defined stages for system testing will be a basis for us to

ensure our documentation is up to standards in terms of security. As it was not made mandatory to

complete each of the documents, we can look at each and select the ones that would cover what we need to

test in our system.

IEEE C37-2040: Standard Cybersecurity Requirements for Substation Automation,

Protection, and Control Systems

Again, we are working with a control system, so any standards or requirements will need to be known to

cover all types of attacks and defenses.

IEEE 802.11: Wireless Networking - “WiFi”

Devices can communicate via Can-to-WiFi using a gateway, so this standard will be used throughout

while looking at security.



7

2.4 INTENDED USERS & USES

This IDS would benefit users of vehicles which rely on the CAN channel for their car to communicate, and

the information about detected intrusions can be useful to vehicle manufacturers on creating better

security.

Users of passenger vehicles that communicate with the CAN bus protocol will benefit from the use of our

IDS through the added security this can provide by being able to detect possible issues or attacks that

could threaten their safety while using the vehicle. This IDS could be utilized by vehicle manufacturers to

view the attacks that are being used to exploit vulnerabilities in their CAN networks and make fixes based

on what they learn from the IDS.

3 PROJECT PLAN

3.1 TASK DECOMPOSITION

Task 1: Project Planning and Research for Requirements and Equipment

● Research CAN bus documentation

○ Communication method

○ Hardware/wiring needed to create a CAN bus channel

○ CAN bus frame formatting

○ Understand the characteristics of normal and malicious CAN traffic

● Research requirements for functional and practical IDS

● Gather prior designs and implementations of an IDS on a CAN bus system

● Search possible car parts in nearby junkyard

○ Send in order and acquire internals from a car

● Search for possible compatible ECU Simulators

Task 2: Raspberry Pi Testbed Design and Implementation

● Configure Raspberry Pi with PICAN2 CAN bus HAT

● Set up CAN channels using software libraries to emulate passenger vehicle use

● Link Arduino to CAN network

● Link multiple Arduinos to CAN network

● Link an ECU simulator to the testbed

● Hardware and Software Inventory

Task 3: Raspberry Pi Testbed Validation Testing

● Send CAN messages from the Raspberry Pi, log and trend to ensure frame validity

● Send CAN messages from one Arduino, log and trend to ensure frame validity

● Send CAN messages from multiple Arduinos, log and trend to ensure no traffic issues

● Send CAN messages from the ECU, log and trend to ensure frame validity

Task 4: Pontiac G6 Testbed Design and Implementation

● Power and connect components to bus

● Set up monitoring device to view and log CAN messages

● Set up and connect MiTM device to the CAN network



8

Task 5: Pontiac G6 Testbed Validation Testing

● Send CAN messages to monitoring device, log and trend

● Inject and Alter CAN messages using MiTM device, log and trend

Task 6: CAN IDS Design and Implementation

● System Configuration

○ Define what tools will be used for network monitoring

○ Decide between signature based and anomaly based detection

● Implementation

○ Deploy the IDS on the chosen platform

○ Integrate with the CAN network to monitor traffic

○ Implement alert mechanisms (e.g., visual, auditory, logs)

Task 7: Integrate IDS into Pi and Car Testbed

● Assign appropriate network settings (e.g., IP addresses, if needed)

● Configure the IDS to monitor the CAN bus traffic specifically

● Input any necessary CAN message formats or templates into the IDS

Task 8: Functional Testing and Performance Evaluation

● Network Test

○ Validate that the CAN network is working properly and as expected

● Initialization Test

○ Ensure the IDS starts up and initializes without errors

● Configuration Test

○ Change various IDS settings and ensure they apply correctly

● Alert Mechanism Test

○ Ensure that when an anomaly is detected, the alert mechanism (be it a log, sound, visual

prompt, etc.) works as intended

● Performance Evaluation

○ Throughput Testing

■ Assess the maximum amount of CAN bus traffic the IDS can handle without

missing any alerts or causing delays

○ Resource Usage

■ Monitor CPU, memory, and other resource utilizations under varying loads to

ensure the IDS doesn't overwhelm the system

○ Latency Measurement

■ Measure the time taken for the IDS to generate an alert once a malicious message

is introduced

○ Scalability Test

■ Increase CAN bus traffic volume and complexity to see if the IDS scales

effectively

○ Recovery & Resilience Test

■ Introduce faults or simulate system crashes and observe how quickly and

effectively the IDS can recover



9

Task 9: Attack/Defense Testing and Evaluation

● Planning & Strategy Development

○ Define the scope, objectives, and desired outcomes for the cybersecurity testing.

○ Determine which attack vectors/scenarios will be simulated

○ Ensure a safe testing environment to avoid unintended disruptions

● Establishing Baselines

○ Monitor and record typical "benign" CAN bus traffic to understand normal patterns.

○ Configure the IDS with current settings and definitions

● Attack Simulation

○ Common Attacks: Simulate well-known attacks on the CAN bus

○ Novel Attacks: Try newer or lesser-known attack techniques to test the IDS's resilience

against unexpected threats

○ Sustained Attacks: Launch prolonged attacks to test the IDS's endurance

○ Stealth Attacks: Introduce subtle, slow, or low-volume malicious activities to check the

IDS's sensitivity

● False Positive Evaluation

○ Inject benign traffic variations that could potentially be misconstrued as malicious.

○ Monitor and record instances where the IDS incorrectly flags these as threats.

● False Negative Evaluation

○ Analyze the IDS logs and compare against the introduced attacks

○ Identify instances where the IDS failed to detect and alert on genuine threats

● Impact & Effectiveness Assessment

○ Determine how quickly the IDS responds to threats

○ Assess the accuracy of the IDS's alerts and logs

○ Evaluate the IDS's resource consumption during attack simulations (CPU, memory, etc.)

● Recovery & Resilience Testing

○ After simulating attacks, test how well the system recovers

○ Determine if the IDS maintains its integrity or requires resets/configuration adjustments

after attacks

● Iterative Adjustments & Retesting

○ Tweak IDS configurations, signatures, or settings based on testing outcomes

○ Re-run specific attack scenarios to see if detection and response improve

Task 10 (Stretch Task): Scale Up Both Networks/Testbeds

3.2 PROJECTMANAGEMENT/TRAFFIC PROCEDURES

We will be using the agile-scrum style of project management for our project. We chose to use this style

because our tasks will need to be completed in a mostly linear order, so putting each task into a sprint to

ensure we finish that in the given amount of time to allow ample time to complete dependent tasks. This

allows us to identify the progress we are making while establishing a well-versed line of communication in

what has, is and needs to be done. This includes regular meetings and tracking what each member has

done to assure we are meeting expectations and moving forward.



10

Another solution we are considering is doing our progress documentation using Gitlab and Discord. All

changes made in software will be documented using issues in Gitlab, while other non-code related issues

will be tracked using Discord.

3.3 PROJECT PROPOSEDMILESTONES, METRICS, AND EVALUATION CRITERIA

Task 1: Project Planning and Research for Requirements and Equipment

● Comprehensive understanding of the CAN bus protocol

○ CAN frame format

○ How CAN messages are sent on the Bus channel

● Comprehensive understanding of Intrusion Detection System and its uses

● Equipment fully gathered for virtual and physical testbed

Task 2: Raspberry Pi Testbed Design and Implementation

● Raspberry Pi is bootable and recognizes PiCan2 bus hat

● CAN channel is initialized on Raspberry Pi

● Raspberry Pi recognizes Arduino UNO’s

Task 3: Raspberry Pi Testbed Validation Testing

● Successful transmission of CAN messages from Raspberry Pi

● Successful transmission of CAN messages from single Arduino UNO

● Successful simultaneous transmission from two Arduino UNOs

● Successful transmission of CAN messages from ECU Simulator

Task 4: Pontiac G6 Testbed Design and Implementation

● Successful integration of car components into the CAN bus network

● Successful integration of monitoring device into network

● Successful integration of MiTM device into network

● All components can recognize each other

Task 5: Pontiac G6 Testbed Validation Testing

● Monitoring device correctly logs all CAN messages, no missed frames

● MiTM device properly injects message in real time, within 0.5 seconds

Task 6: CAN IDS Design and Implementation

● Identify several different attack vectors that the IDS should detect

● The IDS should be programmed to detect these found CAN bus attack vectors

Task 7: Integrate IDS into Pi and Car Testbeds

● Network can properly communicate with IDS using correct static IP address

● IDS configured on monitoring device to view testbeds

● IDS is portable (physical and virtual)

Task 8: Functional Testing and Performance Evaluation



11

● The IDS should start up and initialize without errors or crashes

● IDS settings and other configurations should all apply correctly

● When anomalies are detected, alerts are properly sent out

● Ensure the IDS can handle large amounts of CAN bus traffic

● Test that performance in resource usage remains stable while IDS is in use

Task 9: Attack/Defense Testing and Evaluation

● The IDS should have a 90% detection rate for each designated attack vector

● The IDS should have less than a 5% false positive rate for non-malicious CAN bus messages

3.4 PROJECTED TIMELINE/SCHEDULE



12

3.5 RISKS AND RISKMANAGEMENT/MITIGATION

● Virtualized network does not properly emulate real signals being sent in passenger vehicles.

○ 0.5%

● Physical network does not properly send and receive real signals that are present in passenger

vehicles

○ 0.5%

● ECU simulator(s) are damaged and cannot send CAN bus data resembling passenger vehicles.

○ 0.5%

● ECU’s (TCM, PCM, or the ECU’s MCU) and sensors are damaged and cannot send CAN bus data

resembling passenger vehicles.

○ 2.0%

● Product shipment takes an extended period of time or other issues preventing setting up

hardware.

○ 3.0%

○ Mitigation: Order parts early to give maximum amount of time for delivery, find alternate

methods of obtaining CAN bus data to use for attack vectors and IDS.

● Safety hazard when dealing with electronic components of ICS Testbed.

○ 0.5%

● New feature or requirement is necessary to complete the project that was not known prior to

project start.

○ 0.5%

● IDS host can not properly analyze CAN traffic due to being set up for TCP/IP traffic

○ 3.0%

○ Look into other options for hosting our IDS or developing a different method for hosting

IDS on the network

3.6 PERSONNEL EFFORT REQUIREMENTS

Task 1: Project Planning and Research for Requirements and Equipment

Task Estimated Hours Explanation

Research CAN bus documentation
8

Explore basics of CAN bus protocol and frame

formatting. Understand structure of functional CAN

channels. Research characteristics of both normal and

malicious CAN traffic.

Research requirements for functional

and practical IDS

6 Strengthen knowledge of uses and applications of

intrusion detection systems. Determine estimates for

accuracy and speed of IDS.

Gather prior design and

implementation of an IDS on a CAN bus

system

4 Gather references for design and opportunities for our

IDS. Research methods to program and deploy IDS to

the CAN environment.

Search for possible car parts in a nearby

junkyard

6 Find possible equipment that can be used to create a

physical testbed. Determine plausibility of creating a



13

testbed out of car parts based on tool accessibility and

prior skills. Ensure IDS can be deployed to this testbed.

Search for compatible ECU Simulators 6 Find possible equipment that can be used to create a

virtual testbed. Ensure that acquired components are

compatible with the components being used as the CAN

channel and controller. Ensure IDS can be deployed to

this testbed.

Task 2: Raspberry Pi Testbed Design and Implementation

Task Estimated Hours Explanation

Configure Raspberry Pi with PICAN2

CAN bus HAT
4

Attach PICAN HAT to the Raspberry Pi for joint use.

Download and update all necessary software libraries

required for components to properly interact. Set up

proper configuration and authentication settings,

including allowing remote access to the system.

Set up virtualized CAN channels using

software libraries to emulate passenger

vehicle use

6 Configure basic CAN channel on the PICAN2 HAT to

allow nodes to connect to the virtual network. Utilize

can-utils and cantools libraries for setup and

configuration.

Link Arduino Pros to virtualized CAN

network

6 Introduce first nodes to the CAN network. Implement

code within the Arduinos to be able to emulate ECUs on

the network. Send signals across the CAN channel using

the newly designed nodes.

Link an ECU simulator to the testbed 6 Expand the scope of the current testbed by adding new

nodes to the network. Introduce signals from the ECU

simulator to broaden the type and structure of signals

being sent along the CAN channel.

Hardware and Software Inventory 6 Continuously document all hardware and software being

used in the testbeds. Log all changes being made to

software settings and permissions. Allows for better

visibility and reproducibility of the system.

Task 3: Raspberry Pi Testbed Validation Testing

Task Estimated Hours Explanation

Send CAN messages from the Raspberry

Pi

4 Ensure that the CAN channel has been properly set up

and configured by manually generating signals to be

sent across the channel.



14

Send CAN messages from one Arduino 4 Verify that a node can successfully be added to the CAN

channel and all frames generated can be properly logged

and viewed.

Send CAN messages from multiple

Arduinos

4 Confirm that by creating a CAN network with multiple

nodes, that all messages are still being properly sent

across the channel and no collisions occur causing

problems with the protocol.

Send CAN messages from the ECU 4 Make certain that frames being created from the ECU

node function on the network, similar to previous

Arduinos and no errors arise from having different

nodes on the network.

Task 4: Pontiac G6 Testbed Design and Implementation

Task Estimated Hours Explanation

Power and connect components to bus 12 This process will involve extensive labor of identifying,

splicing, and connecting necessary components while

also testing the circuits.

Set up monitoring device to monitor

CAN messages

8 For our device, we will be implementing a teensy 4.0

and the set up will involve installing, and configuring

drivers as well as connecting it to the network.

Set up man in the middle device 8 For our device, we will be implementing a second teensy

4.0 and the set up will involve installing, and configuring

drivers as well as connecting it to the network.

Task 5: Pontiac G6 Testbed Validation Testing

Task Estimated Hours Explanation

Verify that messages are being logged by

CAN monitor device

10 Connecting the device to the testbed network and to a

laptop to verify that messages are being read by the

device.

Verify that man in the middle device is

able to inject/alter messages on the

network

10 Connect both the MITM and monitor device to the

network and inject messages with the MITM, if they

show as being logged by the monitor device then it is

working.

Task 6: CAN IDS Design and Implementation

Task Estimated Hours Explanation

System Configuration 10 Find most effective ways of monitoring traffic and

decide what method of detection will be used within the



15

IDS.

Rules and Alert Implementations 12 Integrate with CAN messages to teach IDS how to detect

malicious signals. Implement alert mechanisms when an

intrusion is detected.

Task 7: Integrate IDS into Pi and Car Testbeds

Task Estimated Hours Explanation

Assign appropriate network setting to

IDS

8 Ensure that the IDS can properly identify the sender and

receiver nodes for each CAN message. Prevent the IDS

from interrupting the traffic across the CAN channel.

Configure the IDS to monitor CAN

bus traffic specifically

6 Equip the IDS application with the ability to monitor a

protocol like CAN bus. Apply the TCP/IP capabilities of

the IDS application to a physical communication

protocol.

Input any necessary CAN message

formats or templates into the IDS

8 Teach the IDS about CAN packet formatting found in

the testbeds. Instruct the IDS about the channel

structure and its associated nodes.

Task 8: Functional Testing and Performance Evaluation

Task Estimated Hours Explanation

Network Testing 4 Validate that the CAN network is working properly and as

expected.

Initialization Testing 4 Ensure the IDS starts up and initializes without errors

Configuration Testing 4 Verify that all settings within the IDS can be changed and

combined and will still properly function.

Alert Mechanism Testing 4 Ensure that when an anomaly is detected, the alert

mechanism works as intended.

Performance Evaluation 20 Assess the maximum amount of CAN bus traffic the IDS

can handle without missing any alerts or causing delays.

Monitor CPU, memory, and other resource utilizations

under varying loads to ensure the IDS doesn’t overwhelm

the system. Measure the time taken for the IDS to detect

an anomaly and generate an alert once a malicious

message is introduced. Increase CAN bus traffic volume

and complexity to see if the IDS scales effectively.

Introduce faults or simulate system crashes and observe

how quickly and effectively the IDS can recover.



16

Task 9: Attack/Defense Testing and Evaluation

Task Estimated Hours Explanation

Planning and Strategy Development 8 Define the scope, objectives, and desired outcomes for the

cybersecurity testing. Determine which attack vectors and

scenarios will be simulated. Ensure a safe testing

environment to avoid unintended disruptions.

Establishing Baselines 6 Monitor and record typical benign CAN bus traffic to

understand normal patterns. Configure the IDS with

current settings and definitions.

Attack Simulation 12 Simulate well known attacks on the CAN network. Try

lesser known attack techniques on the CAN network.

Launch prolonged attacks to test the endurance of the IDS.

Introduce subtle, slow, or low volume malicious activities

to check the sensitivity of the IDS.

False Positive Evaluation 6 Inject benign traffic variations that could potentially be

misconstrued as malicious. Monitor and record instances

where the IDS incorrectly flags these as threats.

False Negative Evaluation 6 Analyze the IDS logs and compare against the introduced

attacks. Identify instances where the IDS failed to detect

and alert on genuine intrusions.

Impact and Effectiveness Evaluation 6 Determine how quickly the IDS responds to threats.

Assess the accuracy of the IDS’s alerts and logs. Evaluate

the IDS’s resource consumption during attack simulations.

Recovery and Resilience Testing 6 After simulating attacks, test how well the system

recovers. Determine if the IDS maintains its integrity or

requires resets/configuration adjustments after attacks.

Iterative Adjustments and Retesting 12 Tweak IDS configurations, signatures, or settings based on

all testing outcomes. Re-run specific attack scenarios to

see if detection and response improve.

3.7 OTHER RESOURCE REQUIREMENTS

Technical documentation of CAN bus, any existing research/solutions/technologies that may be or

perform as an IDS for CAN bus, personnel well versed in the automotive industry that does cyber security

on CAN bus.



17

4 DESIGN

4.1 DESIGN CONTENT

Our project consists of the implementation of an intrusion detection system on CAN bus networks

observed within passenger vehicles. Our design is to be carried out within three stages; designing a

testbed for a Raspberry Pi CAN Bus Network, designing a testbed for a car CAN bus network emulating

vehicle behavior, and finally deploying the IDS onto both CAN bus networks. By having multiple systems

to test our IDS on, we will have more options for testing different attacks and ensuring the IDS will work

on many different CAN network environments.

4.2 DESIGN COMPLEXITY

Our designs incorporate multiple components used together in order to create a network or a system.

For our first testbed, we will use a Raspberry Pi and a PiCAN Hat 2 in order to create a bus channel. The

CAN bus protocol is widely accepted and used in almost all vehicles and many machines, so this testbed

keeps up with industry standards. We are going to use Arduino UNO’s in order to create multiple nodes to

adeptly simulate what the network inside a car would look like. The engineering principles applied with

this will be network integration, as we need to ensure each component of our system can communicate

with each other, and that that communication can be viewed as well. This will involve both software and

hardware troubleshooting.

For our second testbed, we will be purchasing parts from a vehicle. The vehicle will have many ECUs

connecting to many different components. These components will be taken out of the vehicle and

reconnected in a smaller network outside of the vehicle. To power this network we will use a 12 volt power

supply. We will use a CAN sniffer on the network to monitor the traffic and share that data with the IDS.

Another device will be connected to the network with the ability to send, receive, and modify CAN

messages. This MITM device will be used to run attacks on the network which will alert the IDS of

possible malicious activity.

For the IDS, we plan to implement an open source intrusion detection system, Snort. Snort rules will have

to be set for known malicious behavior as well as the use of machine learning to catch malicious behavior

that has not yet been observed. An issue we may face is to integrate Snort into our testbed networks. Snort

is based on TCP/IP traffic and CAN bus is not. If we are unable to make this work we will pivot into

another open source tool or we will build our own.

4.3 MODERN ENGINEERING TOOLS

Python - The main structure of our Intrusion Detection System (IDS) will be programmed using Python.

We will be utilizing libraries like cantools and can-utils in order to collect CAN messages and analyze

them for potential intrusions.

C - We will utilize C for the Arduinos in order for them to emulate electronic control units (ECU) and

create CAN channels that accurately represent the channels used in passenger vehicles.

Wireshark - We will use Wireshark as a tool to capture and monitor CAN frames. This will allow us to see

the traffic we are generating and observe frames we inject into our systems.

Git - This will be our primary repository for sharing code and progress throughout our project. We will be

creating issues to track progress as we work through the project and keep our code organized.



18

Arduino UNO - We will use these components to be nodes on our CAN network to send signals along the

channel to other Arduinos and the Raspberry Pi.

ECUSIM2000 - This will be used in our testbed to simulate ECUs used in cars in our CAN network.

Raspberry Pi - We will program one of these to be the main node and controller in our testbed.

CAN Transceiver - This small board will be used on top of other PCBs to give them the functionality of

sending and receiving CAN messages.

Car - A car will be stripped to make our second testbed, ECUs, wiring, and components will be taken from

the car and made into a smaller CAN bus network

Figma - This tool will be used to design the layout of the GUI for the IDS

4.4 DESIGN CONTEXT

Area Description Examples

Public health, safety,

and welfare

Our project works towards ensuring

the safe usage of passenger vehicles

by detecting and alerting operators of

potential intrusions occurring.

Problems that result from not secure

CAN bus channels could cause harm

to passenger vehicle users.

Detecting possible hacks into the CAN

channels of passenger vehicles causing the

vehicle to not function correctly. Denial of

Service attack.

Global, cultural, and

social

Globally, most individuals commute

to their workplace or school using an

automotive vehicle whether that is

passenger vehicle, or bus transit

many rely on cars to live. An IDS

would assure malicious actors would

not leave people without reliable

transportation.

In 2021, kia challenge trend caused an

uptick of 19% in car theft where on

average of 17 Kias and Hyundais were

stolen every day in Columbus due to an

exploit where malicious actors use a usb

cable to start the vehicle.

Environmental Testing the IDS may result in damage

to the testbed or cause faulty parts in

which replacement parts would be

required that would have had a

negative impact on the environment.

We lead a carbon neutral footprint in

utilizing recycled material.

Replacement parts require the processing

of raw materials, usage of fossil fuels for

shipment so we thought it is in our best

interest to utilize parts from salvaged

vehicles in the area or borrowed from the

ETG.

Economic IDS would enact a positive measure

in assuring their product’s reliability

as well as the customer’s privacy and

safety.

Companies are greatly impacted by the

financial losses experienced in recalls and

security breaches so there would be a huge

selling market to manufacturers in being

the only of its kind on the market.



19

4.5 PRIORWORK/SOLUTIONS

We have inspiration for both of our testbeds we are designing to send CAN messages. One was also

utilizing a Raspberry Pi and Arduinos as the nodes on the network to create the environment. This project

will be used as a baseline for our simple network, however, we will be using the PICAN2 Hat for our CAN

channel which the other project did not use.

That testbed using the car parts had previously been seen at car hacking competitions, which provided us

proof that this method of creating a CAN network would be possible. We have been in contact with the

creators of the competitions unit for advice and questions about how we could use the car parts for our

own project.

There have been many different intrusion detection systems created and designed in the cyber security

world. Our differs from most IDSs in that types of signals we are analyzing from the network, while most

analyze TCP/IP traffic, our deals with a completely different communication protocol. There have been

some previously designed CAN intrusion detection systems, but these are not the most complete and do

not provide the best documentation.

4.6 DESIGN DECISIONS

For the Raspberry Pi testbed, we were initially going to implement a system using MCP2515 transceivers

in order to initialize the CAN bus channel. We would need one transceiver for each node in the system.

Instead, we chose to use the PiCAN2 Hat in order to create the bus channel, allowing for easier integration

and scaling.

We have also chosen to utilize Python in order to program our IDS because of the several libraries that are

useful when dealing with CAN bus. These libraries will be useful for reading signals from the testbed and

injecting signals into the channel. Having these tools will allow for our IDS to easily obtain data and

analyze it while also allowing easier testing with the injecting of messages.

Lastly, for the second testbed, the choice to pursue the purchase of car parts was a difficult decision and at

first we had decided against this idea. However, after speaking with multiple professionals in the field of

vehicle security who have all built their own testbeds for the purposes of the career, we decided that

pursuing the idea of using a car to build our testbed was an important step in this project. A testbed built

from a car is not only the most real world testbed that we could have, but it is also more economical and

easier to build a testbed from a car. The ECUs, components, and wiring are already built specifically for

each other. The wiring is already designed. There is no necessary programming of ECUs or components,

because they are already programmed. There is only initializing and monitoring the network.

4.7 PROPOSED DESIGN

4.7.1 DESIGN 0 (INITIAL DESIGN)



20

This is the basic idea of which components on both testbeds will need to have and how they will have to be

connected to each other. Beginning at the top, we will start with microcontroller units that will be used to

simulate nodes in the network (ECU’s in a car’s control system). They will be attached to a CAN bus

channel, having one connection to the CAN high wire and one to the CAN low. There will also be two

resistors on each end of the wires, fully creating the channel. This channel architecture will be created by a

CAN bus shield (MiTM device replaces CAN bus shield in car testbed), which in turn will be attached to a

computer of some kind. On this computer is where the Intrusion Detection System will be deployed. The

components being used for each testbed will vary, but all of the pieces will be included as one of the basic

components listed in this diagram.



21

This is a simplified design of what the GUI of the IDS may look like and highlights features required of the

system. Some of the features that will be present within our IDS, are areas where the current rules can be

viewed, enabled or disabled, and changed. The user will also have a section where the logs of the signals

that the IDS analyzes can be monitored and filtered. The interface will require a section for configurability

where administrators will have the ability to change the settings the IDS runs on. All of these areas will

fulfill requirements requested of our intrusion detection system including configurability, authentication,

and data collection.

Functionality

All vehicles come equipped with an instrument cluster that features a set of warning lights that are used to

alert users of a component needing service such as the gas is running low to provide the driver live

updates of the conditions in which the vehicle operates. Modern cars that come equipped with a

multimedia unit or digital display that will further detail the issue persisting while also providing insight

on how soon the issue needs to be addressed (i.e., oil life remaining, miles until empty) but often in older

vehicles for indicators such as a check engine light you need a diagnostic tool to scan the ODB II port to

find out. This has been taken into consideration as we wanted to provide a solution that enables users the

same luxury of modern vehicles in receiving live updates with a graphic interface detailing the issue

persisting. Our IDS would come preloaded onto a small device that connects directly by listening to the

CAN bus traffic and notify users of any malicious traffic or attempts of CAN based attacks. Beyond our

current implementation this design has the potential in being a device that connects to your vehicle's OBD

II port with a mobile app enabled to send



22

4.7.2 DESIGN 1 (DESIGN ITERATION)

This iteration was brought about by the ambition of our group. Although it may be possible to complete

this project without a real non-simulated test bed, we have found it to be economically more efficient,

assembly-friendly, and realistic. With this design we are using real CAN traffic, on a real production

vehicle that is in use by consumers today. This design allows our project to be overall much more

impactful to the community.

This is a high level view of the testbed network that will be built from the 2007 Pontiac G6. The CAN

traffic monitoring device will be connected to the OBDII port, OBDII is a commonly used connection port

for diagnostics tools in vehicles. This monitoring device will be built from a teensy 4.0 chip; the

monitoring device will capture traffic from this network and forward it to the IDS that will be deployed on

it. The CANMiTM (man-in-the-middle) device will be a teensy 4.0, the same as the CAN monitoring

device, it will have the ability to alter messages on the network in real time, as well as simply injecting

CAN messages into the network. This will function as our threat actor. The windshield wipers, headlights

switch, and main power window switch are all things that require a driver to interact physically with them,

when this is done the windows will open/close, the headlights indicator, or turn indicator will appear on



23

the instrument panel cluster. Changes made by the powertrain control module (a.k.a ECU, ECM) will

appear on the instrument panel cluster as well. This would include things such as oil temperature, RPMs,

MPH, or anti-brake locking system indicator.

4.8 TECHNOLOGY CONSIDERATIONS

While deciding on how we could use our IDS and test its uses and effectiveness, we had to consider the

different options and hardware that could properly demonstrate the signals being sent around a CAN

channel in passenger vehicles. Some options would be very difficult to implement, but more accurate,

while others were easier to build, but the messages were further from actual signals. Ultimately, we came

to the conclusion that we could do both of those options. With other projects creating a simple CAN

network using a Raspberry Pi and Arduinos, we could develop a similar system to test the basics of our

IDS on simpler communication methods. This would be accompanied by a testbed using components

from a real car, and while more difficult, we believe that with assistance from people who have developed

similar systems, we could also create a network with these components. This would allow more accurate

messages to be sent along with more real world attacks being introduced and would let us build up our

IDS after making it work with the messages and attacks on the simpler testbed.

4.9 DESIGN ANALYSIS

So far, we have been able to prove that we can make the Raspberry Pi testbed functional for sending CAN

messages across the channel. Within the Pi and using the PICAN2 Hat, we have already been able to

create the CAN channel, can0, and send signals along the channel. Just as important as creating the

channel, we have been able to log messages being sent which will be important for allowing the IDS to

analyze the messages going across the channel. Some changes may be made as to what nodes and the

combination may be used, but they will all send CAN frames across can0.

5 TESTING

For our testing strategy, we have 6 main sections. These include Unit, Interface, Integration, System,

Regression, and Acceptance testing. Unit testing will include specific test cases for each individual

component, such as tools to simulate and analyze network traffic. As for interface testing, ensuring

accurate CAN messages/frames are being sent and received between testbeds and their accompanying

software is the main aspect of this section. Integration testing’s main challenge will be confirming that the

IDS can be deployed on both the Pi and the Car testbed, containing some portability. System testing is the

combination of the first 3 stages, having a unique issue of continuous testing of each system as they are

being individually scaled up, while keeping the integrity of the overall system. Keeping with this same

idea, regression testing will be crucial and natural as we will need to ensure the function of previous

components before and after adding new components to the 3 different systems. Lastly, we will go over all

of this testing with our advisor and confirm that the pre-decided expectations and requirements were met

for every layer of our testing, and the accuracy, latency, and speed of the two testbeds and the IDS are all

up to standards.

5.1 UNIT TESTING

Our unit testing will focus primarily on the IDS itself but also on the software used for the CAN

monitoring device and the CANMITM device. The tests conducted on the monitoring and man-in-the

middle device will target their functionality, to ensure they are performing as intended. This will include

assessing communication and evaluating the ability to properly monitor, intercept, handle errors, and

forward data without unexpected behavior or data loss. A variety of testing platforms and CAN bus



24

specific testing tools will be utilized, such as CANtact/CANable and SocketCAN to test how the devices

interact with the network, and fuzzing tools to assess the response to unexpected input.

Unit testing the IDS will involve evaluating the accuracy and performance of the IDS’s capabilities. This

would be carried out in a series of steps by first generating traffic and observing how the IDS responds to

different types of messages using tools such as CANtact/CANable and can-utils. Tools UDSim and

CANSim will be used to simulate malicious traffic to test the capability of the IDS to recognize

abnormalities and attacks. Finally we would simulate CAN bus attacks such as frame spoofing, or DoS

using the car testbed to evaluate its response.

5.2 INTERFACE TESTING

As there are multiple testbeds and an IDS, there will need to be multiple interfaces tested. For the

Raspberry Pi testbed, there will be two interfaces between the Pi/PiCAN hat and the ECUsim 2000;

ScanMaster-ELM and ECUsim Master. The ScanMaster-ELM is what actually connects the ECUsim to the

Pi, so testing for this will include ensuring that all of the ECU’s that the ECUsim 2000 provides are

accurately shown in the software. There are a lot of sensors in these ECU’s, so it will be important to

complete total tests where we check that every single sensor is outputting “real” data on the software, and

each time we use the ECUsim we should pre-inspect each of the sensors that we are going to be utilizing

for the session to confirm that the data is not corrupted. This procedure will be similar to how the

interface testing for the actual vehicle testbed will go. Each of the parts, like the TCM, PCM, etc, will be

initially tested and have their function be confirmed on a laptop or a MITM device. After, only the

components that will be used in a certain intrusion testing session will be evaluated and double checked,

ensuring the CAN frames are being accurately sent and received. Since the integrity of the CAN

messages/frames will already be established by the time it gets to the IDS interface, the only testing

necessary will be testing if the messages are malicious. This is the purpose of our IDS, so this part will be

constantly running and evaluated.

5.3 INTEGRATION TESTING

The most critical integration in our design is ensuring that our IDS can properly be implemented into our

testbeds. The most important aspect that will need to be tested is that our IDS can properly detect any

intrusion found in our testbeds. To properly confirm that the IDS has been integrated into our testbeds,

we will inject attacks into the system and monitor the accuracy of the detection system when analyzing the

frames. It is also necessary to show that the IDS runs quickly once it has been integrated. This can be

tested by having the nodes on the network send signals and checking how fast the IDS is analyzing all the

frames being sent across the channel.

5.4 SYSTEM TESTING

To ensure the robustness of our CAN bus IDS, we implement a multi-layered testing strategy tightly

coupled with system requirements. Unit testing is conducted using the Unity framework to validate the

functionality of individual pieces of embedded system code. Tools like CANalyzer and CANTools facilitate

interface testing, sending both well-formed and malformed packets to assess the resilience and

correctness of communication within our testbeds. Integration testing is performed in an incremental

fashion; as we introduce new components to our virtualized and physical networks, we can efficiently

isolate and address issues. At the system level, we conduct comprehensive testing by monitoring network

operations under standard conditions, verifying that the testbeds function seamlessly and the IDS

accurately logs traffic in real-time. Additionally, we execute controlled attack scenarios on both networks

to evaluate the effectiveness of the IDS in detecting and responding to threats promptly. This approach

allows for a thorough validation of the entire system's reliability and security performance.



25

5.5 REGRESSION TESTING

Version control for software is in place with Gitlab and peer reviews will be done to ensure accurate

coding practices. We have two CAN bus networks that will be backups for each other. Design decisions are

not made by any one person. We have extensive documentation on what the design of the testbed

networks will look like. Benchmark tests will be done on the Intrusion Detection System to ensure a 90%

level of accuracy in reporting is met and continues to be met as the project progresses.

5.6 ACCEPTANCE TESTING

Our acceptance testing will need to involve both testbeds and the IDS to ensure they meet requirements.

We will test our testbeds to make sure that the signals being sent through the channel meet what the

requirements state by ensuring accuracy and speed of packets being sent. The IDS will undergo tests

from above that check accuracy, latency, and speed as a few examples, and the specific threshold that each

of these aspects needs to meet will be decided by our advisor.

5.7 RESULTS

At this time the project is not in a stage suitable for testing so our results are up to speculation.

Nonetheless, we aim to ensure that each component, IDS functions correctly and meets specified

requirements. Results are expected to confirm functionality, detect errors, assess performance metrics,

ensure system robustness, and satisfy acceptance criteria. Compliance with requirements is achieved by

addressing detected issues, maintaining stability through regression testing, and aligning results with

project documentation.

6 IMPLEMENTATION

Implementation of the testbed will involve building and programming many small pieces that will come

together to complete this project. The CAN monitoring device and our CANMITM device will be built

with a Teensy 4.0 as the board. The board will have two MCP 2562 CAN transceivers, and a female DB9

port soldered onto the board. A male DB9 port connects to the board and will have two wires the CAN

high and CAN low connecting to the testbed network on the other side. Both the CAN monitor and the

CANMITM will be able to connect to any computer through a USB mini connection on the board to a USB

A connection to a computer. The CAN network will be built from stripped electronics of a 3.5 L V6

automatic 2007 Pontiac G6. This includes the Engine Control Module (ECM), Transmission Control

Module (TCM), Body Control Module (BCM), engine fuse box, instrument panel cluster, main power

window switch, headlights switch, turn indicator switch, steering column, ignition switch, engine wiring

harness, and body wiring harness. All of these components and control modules will be connected with

the wiring harnesses and it will be powered by a 12 volt power supply.

The IDS will be built using the open-source tools Security Onion and Snort. Security Onion is a Linux

distribution for intrusion detection, network security monitoring, and log management. It contains a suite

of tools that work in unison to monitor network traffic and alert users of potential threats. Snort, on the

other hand, is a widely used open-source network intrusion prevention and detection system

(NIDS/NIPS) that is capable of performing real-time traffic analysis and packet logging on IP networks.

In this project, Snort will be configured to analyze the network traffic flowing through the CAN network,

identifying suspicious patterns that could indicate a potential intrusion. To ensure effective detection

capabilities, custom Snort rules will be developed based on the typical communication patterns and

messages of the CAN network. These rules will help in identifying anomalies that deviate from normal

operations, such as unusual message sizes, unexpected request rates, or unauthorized access attempts.



26

The system will be tested with various known attack scenarios, such as message injection, flooding,

spoofing, and fuzzing to validate the effectiveness of the intrusion detection setup.

7 PROFESSIONALISM

7.1 AREAS OF RESPONSIBILITY

Area of Responsibility IEEE Code of Ethics NPSE Code of Ethics

Safety, Health, and Welfare To hold safety, health, and

welfare of our team members

and the public as predominant

standard

Engineers shall hold paramount

the safety, health, and welfare of

the public in the performance of

their professional duties.

Improve understanding To use our project to improve

upon the current technical

understanding

Engineers shall perform services

only in the areas of their

competence and continue their

professional development to stay

current in their field.

Avoid conflicts of interest Avoid any conflicts of interest

and bring them to attention if

they should occur

Engineers must act for their

employers or clients as faithful

agents or trustees and avoid

conflicts of interest.

Avoid unlawful conduct and

reject bribery

Do not use our work to do

anything illegal and to always

refuse bribes to do so

Engineers must avoid deceptive

acts and conduct themselves

honorably, ethically, and

lawfully.

Maintain and improve technical

competence

Work to improve and maintain

the technical competence that

currently exists

Engineers should seek to

advance the integrity and

prestige of the profession and

support the professional

development of their colleagues.

Treat all persons fairly and with

respect

To treat all people with respect

and fairness

Engineers shall treat all persons

with dignity, respect, fairness,

and without discrimination.

To not bully or sexually harass We have a duty to never bully or

sexually harass anyone

Engineers shall build their

professional reputation on the

merit of their services and not

resort to unfair or improper

solicitation of their professional

employment.

To avoid injuring others, their

property, or their reputation

We have a duty to avoid injuring

others, their property, or their

reputation

Engineers shall avoid all conduct

or practice that deceives the

public and are responsible for



27

their actions towards others'

property and reputation.

Strive to uphold the code,

support those who uphold the

code, and to ensure that

retaliation on those who report

never happens

We must always strive to uphold

these ideals, and support others

in upholding these ideals, and to

always support those who report

violations of this code.

Engineers shall uphold and

enhance the honor, integrity,

and dignity of the engineering

profession.

7.2 PROJECT SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

Public Health, Safety, and Welfare:

● Highly applicable. The primary aim of the project is to enhance the safety of passenger vehicles by

preventing cybersecurity threats. Ensuring the secure functioning of vehicles directly impacts

public health and safety.

● High performance. The project directly contributes to vehicle safety by detecting potential

intrusions, which is crucial for the well-being of passengers and pedestrians.

Global, Cultural, and Social:

● Highly applicable. Transportation is a global need, and ensuring the security of vehicles is vital

across cultures and societies. Our project has a direct impact on the reliability of a universally

used mode of transport.

● Medium performance. While the project addresses a global need, the extent to which it considers

varied cultural and social contexts in its design and implementation could be further explored.

Environmental:

● Moderately applicable. While the primary focus is on cyber security, the project’s approach to

using recycled materials and salvaged parts shows an awareness of environmental responsibility.

● Medium performance. The team is making efforts to minimize environmental impact through

sustainable practices, but this is not the main focus of the project.

Economic:

● Highly applicable. This project has significant economic implications, both in terms of potential

market value and in preventing economic loss due to vehicle theft or damage from cyber attacks.

● High performance. This project addresses an important economic concern for vehicle

manufacturers and owners, showing a high degree of professional responsibility in this area.

7.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

The most applicable professional area for the project focused on building an Intrusion Detection System

(IDS) for automotive CAN bus systems is unequivocally "Public Health, Safety, and Welfare." This

project's core objective is to fortify the safety of passenger vehicles by proactively identifying and

mitigating cybersecurity threats, a goal that aligns directly with the imperative of ensuring public safety in

the context of automotive transportation. By concentrating on securing the CAN bus systems, which are

integral to the functioning of modern vehicles, the project addresses a critical vulnerability that could, if



28

exploited, lead to dire consequences for vehicle occupants and pedestrians alike. This focus on cyber

security in automotive systems is not just a matter of technological advancement but a crucial safeguard

for public health and safety. Vehicles are an everyday part of life, and any compromise in their electronic

systems could lead to catastrophic failures, posing significant risks to public safety.

8 CLOSINGMATERIAL

8.1 DISCUSSION

The results of our project will be a proper intrusion detection system that can be placed within a CAN bus

network in order to quickly and accurately find any intrusions that may occur within the protocol. Our

work with designing testbeds that can accurately resemble how CAN bus networks communicate and

creating packets that electronic control units in passenger vehicles would actually send, allows the IDS to

be accurate because it was tested on these systems. We will have trained and taught the IDS to be able to

detect several different types of CAN bus attacks that are commonly used when attacking the protocol,

these attacks will be tested through the use of both testbeds we will have prepared.

8.2 CONCLUSION

With our plan for completing this project complete and a head start in the design of both testbeds, we can

look forward to our goals and how they will be achieved. With the parts and components of our two

testbeds in hand, our short term goal is to get the basics of a CAN network established by connecting

single nodes to the channels along with the controller, so that we may begin sending signals between

devices. This first goal will also allow us to include the IDS on the controller and monitor the messages the

single node is sending, thus providing the data to begin IDS development. Beyond that we will expand

each network with more nodes and begin introducing attacks to these networks for IDS testing and

training, this will be followed by making adjustments to the systems configuration and rules to improve

the accuracy and speed to fit our requirements. Ultimately, our work in creating real vehicle emulating

testbeds will result in an intrusion detection system that will correctly assess if threats have entered the

system.

8.3 REFERENCES

[1] J. Staggs, "How to Hack Your Mini Cooper: Reverse Engineering CANMessages on Passenger

Automobiles," University of Tulsa, Institute for Information Security, Crash Reconstruction Research

Consortium, [Online]. Available:

https://www.engr.colostate.edu/~jdaily/tucrrc/CANClock/DEFCON21_Staggs_Paper.pdf

[2] K. Lade and R. J, "CANalyse 2.0: A vehicle network analysis and attack tool," presented at DEF CON

30, Aug. 12, 2022, [Online]. Available: https://youtu.be/Py_1I-GtUxw Accessed on: Oct. 1, 2023.

[3] I. Tabor, "From an 'IVI in a box' to a 'CAR in a box'," presented at ROOTCON 2020, [Online].

Available: https://www.youtube.com/watch?v=4Ptk9ikfpAQ Accessed on: Sep. 21, 2023.

[4] SK Pang Electronics Ltd, "Raspberry Pi CAN2 HAT User Guide," 2016. [Online]. Available:

https://raspberry-valley.azurewebsites.net/ref/Raspberry-Pi-PICAN2-Hat-User-Guide.pdf. [Accessed:

Insert date accessed].

[5] S. Bhattacharya, "CPRE 558 Project Final Report," Iowa State University, 2023.

https://www.engr.colostate.edu/~jdaily/tucrrc/CANClock/DEFCON21_Staggs_Paper.pdf
https://youtu.be/Py_1I-GtUxw
https://www.youtube.com/watch?v=4Ptk9ikfpAQ
https://raspberry-valley.azurewebsites.net/ref/Raspberry-Pi-PICAN2-Hat-User-Guide.pdf
https://raspberry-valley.azurewebsites.net/ref/Raspberry-Pi-PICAN2-Hat-User-Guide.pdf


29

8.4 TEAM CONTRACT

Team Name sdmay24-39

TeamMembers:

1) Cole Burkle

2) Alec Cose

3) Tiffanie Fix

4) Trace Haage

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings: Two meetings per

week, one which includes advisor and graduate student, one with only senior design students

2. Preferred method of communication updates, reminders, issues, and scheduling (e.g., e mail,

phone, app, face-to-face): Discord, email

3. Decision-making policy (e.g., consensus, majority vote): majority vote & advisor veto

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be

shared/archived): Rotate note taking of meetings, notes posted on git & discord

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings: No

unexcused absences.

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

Equal levels of responsibility between team members.

3. Expected level of communication with other team members: Keep team members updated on

progress through discord and weekly updates/reports. Notify the team of meetings that member

will be absent for.

4. Expected level of commitment to team decisions and tasks: 100% committed

Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction,

individual component design, testing, etc.): All team decisions will be made through

majority vote with adviser’s input and final decision.

2. Strategies for supporting and guiding the work of all team members: If one is struggling with

their assigned work they will ask others for help. If someone already knows/ has experience

with something they should take the lead on a given task.

3. Strategies for recognizing the contributions of all team members: Tasks completed and level of



30

difficulty

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to the team.

a. Cole Burkle

i. Worked with CAN bus, cyber security research, programming in C, Java, and Python

b. Tiffanie Fix

i. Cyber Threat intelligence and Incident Responder for IBM XForce,

researched zero-day exploits and detection on MFTs presented at Blackhat c.

Alec Cose

i. Programming experience in Python, Java, and C, IDS experience

d. Trace Haage

i. Python, Java, C. Worked with control systems so I know Modbus, Bacnet, and SCADA

software like Ignition.

2. Strategies for encouraging and supporting contributions and ideas from all team members:

Daily affirmations, don’t be mean, be kind, and understanding when a team member is

struggling

3. Procedures for identifying and resolving collaboration or inclusion issues: Let the team know if

they are having issues with someone or the current team environment.

Goal-Setting, Planning, and Execution

1. Team goals for this semester: Plan out project and set the team up for success

2. Strategies for planning and assigning individual and team work: Gitlab and Discord

3. Strategies for keeping on task: Reporting progress and logging missed or late deadlines

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?

Communicate struggles of team members infractions with class professor and advisor

2. What will your team do if the infractions continue? Discuss with the class professor and advisor

about possibilities or removing member from the team.


